© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

Implication of Data Mining and Machine Learning
In Software Engineering Domain for Software
Model, Quality and Defect Prediction

Anurag Sinha! Shubham singh? Devansh Kashyap?®

Department of computer science and IT, Student, Amity University Jharkhand Ranchi, Jharkhand(India),
834001anuragsinha257 @gmail.com!

Department of computer science and Engineering, Galgotias University, Greater Noida, U.P, 203201
shubham932singh@gmail.com?

Department of computer science and IT, Kalinga Institute of Industrial Technology, Bhubaneswar , Odisha, 751024
devanshkahyap23@gmail.com?®

Abstract: Software metrics have a direct link with measurement in software engineering. Correct measurement is the prior
condition in any engineering fields, and software engineering is not an exception, as the size and complexity of software
increases, manual inspect becomes a harder task. Most Software Engineers worry about the quality of software, how to measure
and enhance its quality. The overall objective of this study was to asses and analysis’s software metrics used to measure the
software product. Developers have attempted to improve software quality by mining and analyzing software data. In any phase of
software development life cycle (SDLC), while huge amount of data is produced, some design, security, or software problems
may analyze software data helps to handle these problems and lead to more accurate and timely delivery of software projects.
Various data mining and machine learning studies have been conducted to deal with software engineering tasks such as defect
prediction, effort estimation, etc. This study shows the open issues and presents related solutions and recommendations in
software engineering, applying data mining and machine learning techniques. Software quality is a field of study and practice that
describes the desirable attributes of software products. The performance must be perfect without any defects. Software quality
metrics are a subset of software metrics that f software defect prediction model helps in early detection of defects and contributes
to their efficient removal and producing a quality software system based on several metrics. The main paper is to help developers
identify defects based on existing software metrics using data mining techniques and thereby improve the software quality. In this
paper, various classification are revisited which are employed for software defect prediction using software metrics in the
literature.

Keywords: Software Metrics, Software Quality software engineering tasks, data mining, text mining, classification, clustering
Software Defect Prediction, Software Metrics, Classification.

l. INTRODUCTION
In context of software engineering, software quality refers to software functional quality and software structural quality. Software
functional quality reflects functional requirements whereas structural quality highlights non- functional requirements. Software
metrics focus on the quality aspect of the product, process and project. In this paper the main emphasis is on software product.
The objective of software product quality engineering is to achieve the required quality of the product through the definition of
quality requirements and their implementation, measurement of appropriate quality attributes and evaluation of the resulting
quality. Software quality measurement [15] is about quantifying to what extent a system or software possesses desirable
characteristics namely Reliability, Efficiency, Security, Maintainability and (adequate) Size. This can be performed through
qualitative or quantitative means or a mix of both. In both cases, for each desirable characteristic, there are a set of measurable
attributes like Application Architecture Standards, Coding Practices, Complexity, Documentation, Portability and Technical &
Functional volumes. The existence of these attributes in a piece of software or system tends to be correlated and associated with
this characteristic. Software Defect Prediction [SDP] plays an important role in the active research areas of software engineering.
A software defect is an error, bug, flaw, fault, malfunction or mistake in software that causes it to create a wrong or unexpected
outcome. The major risk factors related with a software defect which is not detected during the early phase of software
development are time, quality, cost, effort and wastage of resources. Defects may occur in any phase of software development.
Booming software companies focus concentration on software quality, particularly during the early phase of the software
development .Thus the key objective of any organization is to determine and correct the defects in an early phase of Software
Development Life Cycle [SDLC]. To improve the quality of software, data mining techniques have been applied to build
predictions regarding the failure of software components by exploiting past data of software components and their defects. This
paper reviewed the state of art in the field of software defect management and prediction, and offered data mining techniques in
brief mutation. Software metrics provide quantitative means to control the software development and the quality of software
products. They are necessary to identify where the resources are needed, and are a crucial source of information for decision-
making. A large number of measures have been proposed in the literature. A particular emphasis has been given to the

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1453

http://www.jetir.org/
mailto:anuragsinha257@gmail.com
mailto:devanshkahyap23@gmail.com

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

measurement of design artifacts, in order to help assess quality early on during the development process. Assessment of design
quality is objective, and the measurement can be automated. But how do we know what measures actually capture important
quality aspects? The ISO/IEC standard (14598) states that internal metrics are especially helpful when they are related to external
quality attributes, e.g., maintainability, reusability, etc. Many different approaches have been proposed to build empirical
assessment models; for example, they can be mathematical models (case of statistical techniques like linear and logistic
regression) or artificial intelligence-based models (case of machine-learning techniques). Our work deals then with the
construction of efficient and/or intelligible assessment models for quality factors, especially, maintainability and reusability. To
build these models, we have used different Machine-Learning (ML) algorithms. We are interesting in this study, to compute their
performance and to estimate their intelligibility, on software engineering data. Performance refers to a quantitative dimension,
generally expressed by the accuracy of the model, whereas intelligibility evokes the explicitness and the understandability of the
model. Thus, we first present in section 2 the different ML algorithms we have used. In section 3, we describe the empirical
process we follow, then present and discuss the models produced, from the performance and intelligibility perspectives. Finally,
in section 4, conclusions are outlined. In recent years, researchers in the software engineering (SE) field have turned their interest
to data mining (DM) and machine learning (ML)-based studies since collected SE data can be helpful in obtaining new and
significant information. Software engineering presents many subjects for research, and data mining can give further insight to
support decision-making related to these subjects. Figure 1 shows the intersection of three main areas: data mining, software
engineering, and statistics/math. A large amount of data is collected from organizations during software development and
maintenance activities,suchas requirement specifications, design diagrams, source codes, bug reports, program versions, and so
on. Disciplines such as DM, SE, and statistics. This study presents a comprehensive literature review of existing research and
offers an overview of how to approach SE problems using different mining techniques. Up to now, review studies either
introduce SE data descriptions [1], explain tools and techniques mostly used by researchers for SE data analysis [2], discuss the
role of engineers [3], or focus only on a specific problem in SE such as defect prediction [4], design pattern [5], or effort
estimation [6].

Data

Statistics/ p Data
rocessing sk
Math Mining
Data
Traditional Science Data
Research Analysis
Software

Engineering

Figure 1- The intersection of data mining and software engineering with other areas of the field
2. MACHINE-LEARNING FOR BUILDING MODELS

ML is a well-established field of Artificial Intelligence (Al) with many accomplishments (conferences, journals, techniques,
tools,). Many approaches have been developed, and most of the work done in ML has focused on s algorithms. Starting from the
description of classified examples, these algorithms produce definitions for each class. The choice of which specific learning
algorithm we should use is a critical step. A large number of approaches have been developed and supervised learning is certainly
the most prolific one. The main strength of approaches like decision trees, rules, Bayesian Networks (BNs), and to a lesser degree,
Case Based Learning (CBL), is that they produce models we can incorporate in a decision process, where, knowledge-based
system architecture keeps a good separation between what we consider as an explicit expert knowledge (the produced models,
e.g., rules, trees, BNsand the procedures that exploit this knowledge. On the other hand, approaches like Artificial Neural
Networks (ANN) and Support Vector Machines (SVM) are considered as “black box” ones; a part from defining initial
parameters (network. architecture, random numbers, ...), we have no other role than to feed them with i watch them train and
await the output. Thus, the multilayer perception is probably the most widely used ANN architecture to solve classification
problems with supervised learning. The standard training procedure for the multilayer perception uses the back-propagation (BP)
algorithm [1] or one of its derivatives. There are many solutions proposed by many researchers to overcome the slow converge
rate problem. Resilient Back Propagation (RBP) is one of them [2]. Finally, SVM is a relatively new learns introduced by Vapnik
in 1995 for solving two pattern recognition problems [3]. SVM has proven to be effective for many classification tasks such as
text classification, facial expression recognition, gene analysis, and many others. We mu that no single approach/technique can
uniformly outperform other approaches over all data must find a compromise between the characteristics we want to emphasis.
The next section will present models obtained using these ML approaches, on data related to some software product quality
attributes. Their performance and intelligibility will be discussed.

JETIR2010186 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1454

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

3. LITERATURE SURVEY

Peng He et al. conducted an empirical study on software defect prediction with a simplified metric set [2]. Research has been
conducted on 34 releases of 10 open source projects available at PROMISE repository. The finding indicates the result of top-k
metrics or minimum metric subset provides acceptable output compared with benchmark predictors. The simplified or mini mertic
set works well in case of minimum resources. Grishma BR et al. investigated root cause for fault prediction by applying clustering
techniques and identifies the defects occurs in various phases of SDLC. In this research they used COQUALMO prediction model
to predict the fault in a software and applied various clustering algorithms like k-means, agglomerative clustering, COBWEB,
density based scan, expectation maximization and farthest first. Implementation was done using Weka tool. Finally they c that k-
means algorithm works better when compared with other algorithms [1]. Anuradha Chug et al. used three supervised
[classification] learning algorithms and three unsupervised [clustering] learning algorithms for predicting defects in software.
NASA MDP datasets were run by using Weka tool. Several measures like recall and f-measure are used to evaluate the
performance of both classification and clustering algorithms. By analyzing different classification algorithms Random Forest has
the highest accuracy of MC1 dataset and also yields highest value in recall, fmeasure and receiver operating characteristic [ROC]
curve and it indicates minimum number of root mean square errors in all circumstances. In an unsupervised algorithm k-means
has the lowest number of incorrect clustered instances and it takes minimum time for predicting faults [3]. Jaechang Name et al.
applied Hetrogeneous Defect Prediction [HDP] to predict defects in with-in and across projects with different datasets. Metric
selection, metrics matching and building a prediction model are the 3 methods used in this work. In this research they used
various datasets from NASA, PROMISE, AEEEM, MORPH and SOFTLAB. Source and target datasets are used with different
metric sets. For selecting metrics feature selection techniques such as gain ratio, chisquare, relief-F and significance attribute
selection are applied to the source. To match source and target metrics various analyzers like Percentile based Matching
(PAnalyzer), Kolmogorov — Smirnov test based matchiong (KSAnalyzer), Spearman’s Correlation based Matching
(SCOAnalyzer) are used. Cutoff threshold value is applied to all pair scores and poorly matched metrics are removed by
comparison. Area Under the Receiver Operator Characteristic Curve [AUC] measure is used to compare the performance between
different models. HDP is compared with 3 baselines — WPDP, CPDP-CM, CPDP-IFS by applying win/loss/tie evaluation. The
experiments are repeated for 1000 times and Wilcoxon signed rank test (P<0.05) is applied for all AUC values and baselines.
Performance is measured by counting the total number of win/loss/tie. When a cutoff threshold value gets increased in PAnalyzer
and KSAnalyzer, the results (win) also gets increased. Logistic Regression (LR) model works better when there is a linear
relationship between a predictor and bug-prone [4]. Logan Perreault et al. applied classification algorithm such as naive bayes,
neural networks, support vector machine, linear regression, K-nearest neighbor to detect and predict defects. The authors used
NASA and tera PROMISE datasets. To measure the performance they used accuracy and f1 measure with clearly well defined
metrics such as McCabe Metrics and Halstead Metrics. 10-fold cross validation is used in which 90% of data are used for training
and 10% of data are used for testing. ANOVA and tukey test was done for 5 dataset and 5 response variables. 0.05 is set as
significance level for PC1, PC2, PC4 and PC5 dataset and 0.1 as PC3 dataset. Weka tool is used for implementation.
Implementations of these 5 algorithms are available on Github repository. Finally the authors conclude that all datasets are similar
and they are written in C or C++ and in future the work can be extended by selecting the datasets that are written in Java and
instead of using weka tool for implementation some other tool can also be used [5]. Ebubeogu et al. employed predictor variables
like defect density, defect velocity and defect introduction time which are derived from defect acceleration and used to predict the
total number of defects in a software. MAChine — Learning — Inspired [MACLI] approach is used for predicting defects. The
proposed framework for defect prediction has two phases. 1) Data preprocessing phase. 2) Data analysis phase [6].

4. Software Defect Prediction

A software defect is an error, flaw, failure, or fault in a computer program or system that causes it to produce an incorrect or
unexpected result, or to behave in unintended ways. Most defects arise from mistakes and errors made by people in either a
program's source code or its design, or in frameworks and operating systems used by such programs, and a few are caused by
compilers producing incorrect code. Software Defect Prediction Model refers to those models that try to predict potential software
defects from test data. There exists a correlation between the software metrics and the fault proneness of the software. A Software
defect prediction models consists of independent variables (Software metrics) collected and measured during software
development life cycle and dependent variable (faulty or non faulty). There are different data mining techniques for defect
prediction. Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD, a process of
discovering patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning, statistics,
and database systems. The overall goal of the data mining process is to extract information from a data set and transform it into an
understandable structure for further analysis. Data Mining can be divided into two tasks: Predictive tasks and descriptive tasks.
Predictive task is to predict the value of a specific attribute (target/dependent variable)based on the value of other attributes
(explanatory). Descriptive task is to derive patterns (correlation, trends, and trajectories) that summarize the underlying
relationship between data. There are various data mining techniques used for software defect predictions which are discussed
below.

1. Regression: It is a statistical process to evaluate the relationship among variables. It analyses the relationship between the
dependent or response variable and independent or predictor variables. The relationship is expressed in the form of an equation
that predicts the response variable as a linear function of predictor variable. [42, 24, 51, 25] Linear Regression: Y=a+bX+u

2. Association Rule Mining: It is a method for discovering interesting relationships between variables in large databases. It is
about finding association or correlations among sets of items or objects in database. It basically deals with finding rules that will
predict the occurrence of item based on the occurrence of other items. [11, 17, 40,26]

3. Clustering: Clustering is a way to categorize a collection of items into groups or clusters whose members are similar in some
way. It is task of grouping a set of items in such a way that items in the same cluster are similar to each other and dissimilar to
those in other clusters. [27, 34, 17, 30]

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1455

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

4. Classification: It consists of predicting a certain outcome based on a given input. Classification technique use input data, also
called training set where all objects are already tagged with known class labels. The objective of classification algorithm is to
analyze and learns from the training data set and develop a model. This model is then used to classify test data for which the class
labels are not known. [43, 27, 30,6, 22]. The various classification techniques are given below.

a. Neural Networks: Neural Networks are the non linear predictive models which can learn through training and resemble
biological neural networks in structure. A neural network consists of interconnected processing elements called neurons that work
together in parallel within a network to produce output. [22, 21, 47, 42]

b. Decision Trees: A decision tree is a predictive model which can be used to represent both classification and regression models
in the form a tree structure. It refers to a hierarchical model of decisions and their consequences. It is a tree with decision nodes
and leaf nodes. A decision node has two or more branches. Leaf nodes represent a classification or decision. [39, 31, 37]

c. Naive Bayes: It is based on Bayes theorem with independence assumption between predictors. Naive Bayes Classifier is based
on the assumption that the presence or absence of a particular feature of a class in not related to the presence or absence of any
other feature. [21, 14, 28]

d. Support Vector Machines: SVM are based on the concept of decision planes that define decision boundaries. A decision
plane is the one that separates between a set of objects having different class membership. SVM is primarily a classifier method
that performs classification task by constructing hyper plane in a multidimensional space that separates cases of different class
labels. It supports both regression and classification. [50, 10, 29] e. Case Based Reasoning: Case based reasoning means solving
new problems based on the similar past problems and using old cases to explain new situations. It works by comparing new
unclassified records with known examples and patterns. A simple example of a case based learning algorithm is k-nearest
neighbor algorithm. It is simple algorithm that stores all available cases and classifies new cases based on a similarity measure i.e.
distance function. [39]

Approach of Software Defect Prediction.

Mostly three approaches are performed to evaluate prediction models.
3.1 With-in Project Defect Prediction [WPDP]

3.2 Cross Project Defect Prediction [CPDP] for Similar Dataset

3.3 Cross Project Defect Prediction [CPDP] for Heterogeneous Dataset

4.1With-in Project Defect Prediction a prediction model can be constructed by collecting histori data from a software project and
predicts faults in the same project are known as WPDP. WPDP performed best, if there is enough quantity of historical data
available to train models. Turhan, Burak, et al. [15] suggested that software defect prediction areas typically focus on developing
defect prediction models with existing local data (i.e. within project defect prediction). To apply these models, a company should
have a data warehouse, where project metrics and fault related information from past projects are stored. Zimmermann et al. [11]
notify that defect prediction performs better within projects as long as there is an adequate data to train models. That is, to
construct defect predictors, we need access to historical data. If the data is absent, Company Defect Prediction (CCDP) can be
applied. The drawbacks of with-in project defect prediction are: O It is not constantly possible for all projects to collect such
historical data 100% accuracy cannot be achieved using WPDP. On the other hand, historical data is often not presented for new
projects and for many organizations. In this case, successful defect prediction is complicated to accomplish. To tackle this
problem, cross project defect prediction strategy was applied.

4.2 Cross Project Defect Prediction [CPDP] for Similar Dataset CPDP is used in a mode such that a project does not have
sufficient historical data to train a model. So that, a prediction model is developed for one project and it has been applied for some
other project or across project. i.e. transferring prediction models from one project to another project [10]. The drawbacks of
applying CPDP is that it desires projects that have similar metric set, implication that the metric sets must be equal among
projects. As an outcome, present techniques for CPDP are complicated to relate across projects with dissimilar dataset.

4.3 Cross Project Defect Prediction [CPDP] for Heterogeneous Dataset To deal with the inadequacy of using only similar dataset
for CPDP, in Project Defect Prediction A prediction model can be constructed by collecting historical data from a software
project and predicts faults in the same project are known as WPDP. WPDP performed best, if there is enough quantity of
historical data available to train models. Turhan, Burak, et al. [15] suggested that software defect areas typically focus on
developing defect prediction models with existing local data (i.e. within project defect prediction). To apply these models, a
company should have a data warehouse, where project metrics and fault related acts are stored. Zimmermann et al. [11] notify that
defect prediction performs better within projects as long as there is an adequate data to train models. That is, to construct defect
predictors, we need access to historical data. If the data is absent, Cross Company Defect Prediction (CCDP) can be in project
defect O It is not constantly possible for all projects to collect such historical data 0 Hence 100% accuracy cannot be achieved
using WPDP. er hand, historical data is often not presented for new projects and for many organizations. In this case, successful
defect prediction is complicated to accomplish. To tackle this problem, cross project defect prediction

4.4Cross Project Defect Prediction [CPDP] for Hetrogeneous Dataset To deal with the inadequacy of using only similar dataset
for CPDP, heterogeneous defect prediction [HDP] technique was proposed to predict defects across projects with imbalanced
metric sets [4].

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1456

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

Software Defect Prediction Techniques
To improve the effectiveness and quality of software development and to predict defects in software, various data mining

techniques can be applied to different Software Engineering areas. The broadly used SDP techniques are datamining techniques
and machine learning techniques are depicted in Figure 2

Machine Learming Algorithms

Supervised Algorithms Unsupervised Algonthms
Classification Regression Clustering
I—-. Naive Bayes Lo Limear L’ K-Means
Support Vectar Regression Clustering
Machine Non — linear Hierarchical
Rimdsii Forsst Regression Clustering
2 Logistic Probabilistic
Decision Trees Regression Clustering
Neural Networks Multivariate Density - based
Nearest Neighbour Regression Clustering

Figure 2: Machine learning algorithms

5. Data mining in defect prediction

A defect means an error, failure, flaw, or bug that causes incorrect or unexpected results in a system [8]. A software system is
expected to be without any defects since software quality represents a capacity of the defect of the product [9]. However, software
projects often do not have enough time or people working on them to extract errors before a product is released. In such a
situation, defect prediction methods can help to detect and remove defects in the initial stages of the SDLC and to improve the
quality of the software product goal of defect prediction is to produce robust and effective software systems. Software systems.
Hence, software defect prediction (SDP) is an important topic for software engineering because early prediction of software
defects could help to reduce development ¢ more stable software systems. Various studies have been conducted on defect
prediction using different metrics such as code complexity. Metrics, object-oriented metrics, and process metrics to construct
prediction models [10, 11]. These models can be considered on a cross-project or within-project basis. In within-project defect
prediction (WPDP), a model is constructed and applied on the same project [12]. For within project strategy, a large amount of
historical defect data is needed. Hence, in new projects that do not have enough data to train, cross-project strategy may be
preferred [13]. Cross-project defect prediction (CPDP) is a method that involves applying a prediction model from one project to
another, meaning that models are prepared by utilizing historical data from other projects [14, 15]. Studies in the field of CPDP
have increased in recent years [10, 16]. However, there are some deficiencies in comparisons of prior studies since they cannot be
replicated because of the difference in utilizing evaluation metrics or preparation way of training data. Therefore, Herbold et al.
[16] tried to replicate different CPDP methods previously proposed and find which approach performed best in terms of metrics
such as F-score, area under the curve (AUC), and Matthews’s correlation coefficient (MCC). Results showed that 7- or 8-year
approaches may perform better. Another study [17] replicated prior work to demonstrate whether the determination of
classification techniques is important. Both noisy and cleaned datasets were used, and the same results were obtained from the
two datasets. However, new dataset gave better results for some classification algorithms. For this reason, authors claimed that the
selection of classification techniques affects the performance of the model. Numerous defect prediction studies have been
conducted using DM techniques. In the following subsections, we will explain these studies in terms of whether they apply
ensemble learning or not. Some defect prediction studies in SE are compared.

Defect prediction using ensemble learning techniques Ensemble learning combines several base learning models to obtain better
performance than individual models.

These base learners can be acquired with:

i. Different learning algorithms

ii. Different parameters of the same algorithm

iii. Different training sets

The commonly used ensemble techniques bagging, boosting, and stacking are shown in Figure 3 and briefly explained in this part.
Bagging (which stands for bootstrap aggregating) is a kind of parallel ensemble. In this method, each model is built
independently, and multiple training datasets are generated from the original dataset through random selection of different feature
subsets; thus, it aims to decrease variance. It combines the outputs of each ensemble member by a voting mechanism. Boosting
can be described as sequential ensemble. First, the same weights are assigned to data instances; after training, the weight of wrong
predictions is increased, and this process is repeated as the ensemble size. Finally, it uses a weighted voting scheme, and in this
way, it aims to decrease bias. Stacking is a technique that uses predictions from multiple models via a metaclassifier. Some
software defect prediction studies have compared ensemble techniques to determine the best performing one [10, 18, 21, 39, 40].
In a study conducted by Wang et al. [18], different ensemble techniques such as bagging, boosting, random tree, random forest,

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1457

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10

www.jetir.org (ISSN-2349-5162)

random subspace, stacking, and voting were compared to each other and a single classifier (NB). According to the results, voting
and random forest clearly exhibited better performance than others. In a different study [39].

Year Task Objective Algorithms Ensemble Jearning Diataset Evaluation metrics and
romilty
011 Chsiification Comparative study of varioos ~ NB Bapging, boosting, NASA datasets; (M1 JMIKCT 10-fold CV, ACC, and AUC
ensemble methods to find the RT, RY, RS, KC2 KC3 KCA MCI MC2 MW Viode S8.48% nondom forest
inast effective one AdaBousa, Stackeng, PC1PC2 PC3 PCA PCS £7.90%
and Vetiag
W13 Clmification Comparative study of dass NB, RUPS, RUS-hal, THM, SMB, RF, SMB, BNC, NASA and PROMISE repository: 10-fold CV
Imbakince kearning methods and BNC Adalicost.NC MC2, KC2, M1, KCL PCA, PGS, Balance, G-mean and AUC,
praposed dynamic venson of (M1, KC3, MW1, 1 D, ¥
AdaBroost.NC
2014 Chwificarion Comparative study to deal with Base Classifien: (4.5, NB AdaBoost, Bapging, NASA datasets: CM1, M3, KC1, 5 x SCV, MOC, ROC, resules
imbakinced data Samplioyg: ROS, RUS, SMOTE boasting, RF KC2, K3, ML MCL, MW, chuige according to
B, G2, PC3, POA, PCS chunctorisslis of datasts
2015 Qustering! To show that the sedection of Statistical: NB, Simple Logistic Bagging, Adafloost, NASA: CM1, M1, KC1L KC3, 10 x 10-fold CV
chsdfieation chasification fechnlque lasan Clasterligg: KM, EM rotation forest, KC4, MWI, PCL PG, PG, PG4 MUC > 05
lmpact on the pesformance of Rude based; Rippes, Ridor random pubspace PROMISE: Ant 17, Camed 1.6, Seott-Knott rest e - (.05,
software defect prediction NNs: RBF Twy 14, Jedit 4, Lopdj 1, Luoene ximphe Jogistic, LMT, and
el Nearest. neighbor: KNN 2.4, Poi 3, Tomeat 6, Xaln 26, RF + b learner
1T J48, 1MT Xoroes 13 olrperfor KNN and REF
W15 Chsification Average prohahility eneemble — APE sywtom combineseven RE, GB INASA: CM1, M1, KCI, KC3, 10 x 10-fold CV, AUC > 0.5
(APE) bearniesg modale ls chssifiers: SGI, weighted SYMs KCA, MW, POL PC2, PC3, PCA Scots-Knott bt @ - (.05,
propesed by comhining fearure (W-SVM), LR, MNEB and PROMISE (RQ2): Ant 1.7, Cansed - slmple Joplstic, LMT, and
selection and eosemble learning Bernoull: naive Bayes (ENE) 1.6, Ivy 1.4, Jedit 4, Lot 1, RF + base learnes
Lascene 2.4, Poi 3, Tomeat 6, outperforms KNN and RBF
Xalan 2.6, Xeroes 1.3
2016 Chissification Comparative study of 18 ML LI, NB, BN, MLF, RBF Bagging, random 6 releases of Android app: 10-fold, inter-relene
fechniques sk 00 metrdes on — SVM, VP, CART, J48, ADT, fueess, Logstic Aadroid 232, Android 237, validation
sbx redeases of Androld opesating Noge, DTNE model trees, Loght Andvold 4.0.4, Androsd 412, AUC for NB, LB, MLP &s
system Boost, MdaBoost Aadmid 422, Android 431 207
W16 Chissificarion Caret has boen applied whethes NB, KNN, LR, parial keas Hagging, hoostlng Cleancd NASA M1, PCS Out-of sample bootstrap
parameter settings can havea squares, NN, LDA, nde based, Propeietary frum Prop-1 to validation techmique, AUC
DT, SVM Prop-5

JETIR2010186

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1458

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

Year Task Objective Algorithms Ensemble learning Dataset Evahation metrics and
rusailis
2015 Classification Defect identification hy applying NB, J48, MLP PROMISE, NASA MDP dataset: 10 fold CV, ACC, PR,
DM algorithme CM1, M1, KCH, KC3, MC1LMC2, TMLP s the bost
MW, X1, PC2, PC3
2008 Classification To show the st that NE, NN, tisochition rulis, U7 Weightod votog nde NASA datagetss CM1, IM1 KC1, PR, recall, ACC, Fogeore
pradict the defective state of 0f the four KC2, PC1 NE>NN>DT
software modubes algosithms
2016 (hassification Autbors proposed a moded that — NB, LR, LiviVM, MLP, SGD, RFP Camell 6, Tomecat 6.0, Ant 17, 10-fold CV, AUC
finds fault proneness SMO, VPP, LR Logit loost, JEdied.3, vy L0, arc, e deaming, AUC - 0.661
Decision Seamy, RT, REP Tree herok, forrest 0.8, ogeed,
Intesreafe, and Nieruchomesd
2016 Classification GA to select satitahle source code - LR, ELM, SVML, SVMR, SVMFF - — 30 apen-sounce mitware projects 5-fold CV, F-acore, ACC,
Inetrics fronm PROMISE ropodtary fromm — palewise 1-1esd
D51 to DS30
06 — Weightod keast-squares twin SVM, NI, RF, LR, KNN, BN, — PROMISE repository; CM1, KC1, 10-fold CV, PR, tecall,
suppart vector machine cost-sensitve newral petwork PCL, PC3, PCA, MC2, KC2 K3 Fascoee, Ganean
(WLSTSVM) to find Wilcoxon signed rank test
msclassficasion cost of DY
2016 A multi-objoctive maive Bayes NB, LR, DT, MODT, MOLR, Jurecdo datascts obtained from AUC, Wilcoxon rank test
learriing nechalpues MONE, MON# PROMISE ropository CP MO N (0.72) prodeces
MOUNN the highest value
2016 Clasdfication A software defoct predietlon Hyhrid filter approaches - KC1, KC2, ML, PG, PE2L C3, AGE, et fleers, ACC 50%
moded to Find faulty components - FISHER, MR, ANNIGMA. and PCA datasets
of a software
201/ Classification Propose an hybod method called - A random undesaumpling based Stackiog: DT, LR, NASA MDP: Le, CM1, KC1, 10-fold CV, AUC,
TSC-RUS + 8 on two step chster (TSC) kNN, NI} KC3, MC2, MW1, PCL, PC2, (TSC-RUS + §) is the best
PC3, PCA
W7 Cassification Analyze five popular ML ANN, S0, DT, NB, LC Nasa and PROMISE datancte 10-fold CV
algorithes fos software defoct M1, IM1, KCY, KC2, PCT, ANN < DT
predicion KC1-LLC

6. Machine Learning Approach for Quality Assessment and Prediction in Large Software Organizations

ISO 9126 defines quality as “The totality of features and characteristics of a software product that bear on its ability to satisfy
stated or implied needs" While ISO 25000 takes the following approach to quality: “capability of software product to satisfy
stated and implied needs when used under specified conditions” ¢ Assessing software quality early in the development process are
essential to identify and allocate resources where they are needed most ¢ Software metrics provide quantitative means to control
software product and quality, ¢ Software quality estimation models establishes relationships between desired software quality
characteristics and measurable attributes, * These models can be based on statistical techniques such as regression models or
logical models, ¢ Since logical models such as those based on decision trees or rule sets are white-box models their interpretation
and thus also preferred.

Software Quality ¢ Software metrics have long been used for monitoring and controlling software process, asses and/or improve
software quality, « Metrics collection and analysis is part of daily work activities in large software development organizations, *
Mature software development organizations also widely use the information model of ISO/IEC standard 15939 as means of
identifying the information needs and implementing measurement systems.

In this paper we propose how ML based approaches can be used within the ISO/IEC 15939 information model framework for
effective assessment and prediction of software quality. Framework that uses machine learning approaches within ISO/IEC 15939
information model will enhance the adoption of these techniques in large scale software organizations already using the standard
for their information needs.

JETIR2010186 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1459

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10

www.jetir.org (ISSN-2349-5162)

TABLE 1 SOFTWARE QUALITY

Characteristics Subcharacteristcs
suitability
accuracy
Functionality interoperability
security
functionality compliance
maturity
Re"ablllty fault tolera'r_\ce
recoverability
reliability compliance
understandability
leamability
Usability operability
attractiveness
usability compliance
time behawviour
Efficiency resource efficiency utilisation
efficiency compliance
analysability
changeability
Maintainability stability
testability
maintainability compliance
adapiability
installability
Portability co-existence
replaceability
portability compliance
[information
Data Analysis | Produt_|
| {_ Interpretation) I
| S — ‘_,/' : =
I | ~Eq3ff?£’
| | dadicator I
! L | indiczior
| — | b
| Anzfysis
| Mods! ! » B
e | 7 hsalyss
IR Molel
_______________ \‘,—/
|Data Preparation e : P
Derve
| :‘:i I Derived Denves
| = I Measirz Mezsure |
| - ! | i
" AR
| /" Messwemert I ,,;\\ i,
| . Function_ | 7 Mezsurement /" Measwemest
I - o | _ Funtion _/ _Funcion /
BooasaosraRe=nsd B < "
FoaoommoS .- = - - /‘ ~>‘ /_/ ™
| e | Basz Bae Base
| | Moo) | Measurz Mazsure Mezsurz
| } , L i , ,
| -‘/—.\7\ I —— —— ——
| Messrerest) | “Mezsurament /Messurenert “Wzssrerent
I S Mztiod \ Methed Method
| f | S ———" S ——— N ——
| r | fe o —
| | atribue | | Agribete | Adtrite | mirbute
:

L

FIGURE 3- ISO 15939 Measurement Information

JETIR2010186

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 1460

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)
Framework for Quality Assessment using Ml

| Quality |

ML Pattern Recognition

models ‘____/

Characteristics - A l l Characteristics - B I l Characteristics - C]

Interpretation

F N

Quality Characteristics

e

ML Classification models as
— SVM -

o~

| Derived Measure(s)/ |
___Quality Subcharacterstics |

ML models such as

Base Measure(s)

-~

NMeasurement Method
3 = =

. Attributes from Measured Entities

ASSESSING SOFTWARE QUALITY ATTRIBUTES

For building assessment models in the area of software product quality, we first have to connect internal measurable software
artifacts, like, coupling, cohesion, inheritance, size, and complexity, to quality factors we want to assess. These internal artifacts
are well documented in the literature and are presented for instance in [4] [5]

Maintainability is declined in 3 ways: (i) cost of corrective maintenance (correctability, the total effort spent to isolate and correct
an ADA faulty component: low or high, see [4]), (ii) fault proneness at the class level (in a n component, here a C++ class, there
was not any change of corrective type and, in a faulty one, there were one or more changes of corrective type during the
development/maintenance phase, see [5]), and (iii) change impact, see [6]. On the other hand, reusability is defined in our context
as the amount of work needed to reuse a component (a C++ class) from a system to another system of the same domain, i.e., the
percentage of the code, which needs to be changed before reusing the component in a new system of the same domain. In order to
generate assessment models, we have selected several algorithms belonging to the ML approaches presented in section 2. We
have run them on software data collected from ADA, C++ and Java medium size applications. Some used ML algorithms are
implemented in WEKA, an open source data-mining environment. We used also the BNJ tool (Bayesian Network tools in Java),
which is written in Java and is available on the web1, and for the BP ANN, RBP ANN, and the SVM, we have used the MathLab
tool. The computation of models accuracy is done thanks to a cross-validation procedure. It is helpful when the amount of data for
training and testing is limited, which is our case. In terms of accuracy, and depending on which hypothesi algorithm we consider,
we obtain very high results, especially for RBP ANN and BP ANN, and pretty high results for SVM and decision trees. Tables 1,
2, 3, and 4 illustrate these results.

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1461

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

TABIEL ACCURACIES FOR CORRECTASILITY OF ADA COMPONENTS.
Correctability/Complexity and Size
Decision tress 66
Rules 58.5
CEL 5.7
BNN 77.4
RBNN 30.66
SVM 62.33
TABILEIL ACCURACIES FOR FAULT-PRONENESS OF C++ CLASSES.
FaskpronzpessCopling FauntproncasssiCodesioe Faul-promessssmderitance
Decison rzss Ta 137 138
Ruzs] 122 §S
;| k! 3 138
B 132 i.2 i3
FEW LA | Mz g1
Wy 3 Bl 4s £435
TABLE III. ACCURACIES FOR REUSABILITY OF C+— CLASSES.
FewsstinyCowing Ruszbilfphiterinz: Ressabityomplexity aed Soe
posion lress 21 738 83
Rues 31 b7 3 il
< | 39 M3 7
Y ME &84 A
BN B4 &2 L
Wu a2 i e

Firstly, in terms of selected internal metrics, we found certain uniformity between the different models. Decision trees
and rules-based models; allow us to identify the internal software artifacts that are relevant for assessing a particular
quality factor. For instance, The complexity/size metric NPM (number of parameters per method) is identified as a
good indicator of reusability. In fact, combined with others like, NOP (number of polymorphic methods) and CSB
(Class Size in Bytes), they allow us to determine if a component is reusable. It is also the case for design export
coupling measured by OCAEC and OMMEC. On the other hand, the classic CBO metric (the number of other classes
to which a class is coupled), and methods invocation, e.g., ACMIC (ancestor class method import coupling), RFC a
(the numbe methods that can potentially be executed in response to a message received by an object of that Firstly, in
terms of selected internal metrics, we found a certain uniformity between the different based models, allow us to
identify the internal software artifacts that are relevant for assessing a particular quality factor. For instance, the
complexity/size metric (number of parameters per method) is identified as a good indicator of reusability. In fact,
combined with others like, NOP (number of polymorphic methods) and CSB (Class Size in Bytes), they allow us to
determine if a component case for design export coupling measured by OCAEC and OMMEC. On the other hand, the
classic CBO metric (the number of other classes to which a class is coupled), and methods invocation, e.g., ACMIC
(ancestor class method import coupling), RFC_a (the number of methods that can potentially be executed in response
to a message received by an object of that (class), and IH-ICP (the number of ancestor methods invocation in a class,
weighted by the number of parameters of the invoked methods) are identified as relevant coupling measures for fault
proneness assessment. In the case of inheritance, NMI (the number of methods inherited), NMO (the number of
overridden methods), and DIT (the maximum length from the class to a root) are the three that are stated relevant
fault-proneness. Finally, LCOM2, LCOMS5, and LCOML1 are the definitions of cohesion identified as relevant by the
ML algorithms for assessing fault-proneness. Models induced for change impact analysis (table 4), especially trees
and rul that among the selected metrics measuring coupling, five metrics are effectively relevant to change impact.
Some of them are regarded as design metrics (AMMIC and OMMIC), others are considered as implementation

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1462

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

metrics (MPC, CBOU, and CBONA). Rules produced by such glass-box models are exploitable to build a BN
topology. After building the topology, we have to affect probabilities to the nodes. The entry nodes probabilities are
directly deduced from measurements of these variables starting from data-set. Intermediate nodes are not directly
measurable. They are defined or influenced by their parent nodes. Once the graph structure and all probabilities tables
are defined, we can proceed with the Bayesian inference. Thus, BNs offer the possibility of processing scenarios of
the form «What will occur if ...?», allowing to identify potential problems and actions to be undertaken for
improvement. For instance, by decreasing the metrics values CBONA and CBOU, change impact weakens more.
Conversely, by CBONA and CBOU metrics values, the change impact becomes increasingly strong. These examples
give an illustration of the interpretability and flexibility of the BNs models. They highlight the usefulness of such
glass Moreover, and despite the fact that BP and RBP ANNs performances are close to 80% in table 1, we consider
that these black allow us to conclude anything about the relevance of selected metrics for corrective maintenance
costs assessment. By contrast, accuracy, rules-based models allow us to learn intelligible rules that identify relevant
metrics. This is an example of an interpretation of such a rule: « one condition for an Ada faulty component to have a
high corrective maintenance cost is when it is not well commented in comparison with the complexity revealed by the
number of operators ». Of course, more experiments on more data extracted from various and representative systems
are needed to confirm such conclusions.

7. MODEL SELECTION USING ML
POPULAR SOFTWARE DEVELOPMENT MODELS

A software cycle deals with various parts and phases from planning to testing and deploying software. All these activities are
carried out in different ways, as per the needs. Each way is known as a Software Development Lifecycle Model (SDLC). [5] A
software life cycle model is either a descriptive or prescriptive characterization of how software is or should be developed. The
following are some basic popular models that are adopted by many software development firms .

3.1 The Waterfall Model When requirements are well defined and stable the waterfall model otherwise known as the classical
life cycle, with its systematic and sequential approach can be utilized. The sequence begins with communication from the
customer regarding specification and progresses through planning, modeling, construction and deployment. If the requirements
are fixed and if work proceeds in a linear fashion to complete the project, then the waterfall model is appropriate.

3.2 Prototyping Model When detailed requirements for functions and features cannot be identified, and when the developer is
not sure of the efficiency of an algorithm, the flexibility of an operating system, and the form of human-machine interaction, a
prototype concept is utilized. “It is used as a technique that can be implemented within the context of any one of the process
models.”[6] The prototype is made after fixing the overall objectives and requirements. The ensuing quick design climaxes in the
construction of a prototype. The prototype is checked and refined with the feedback from the end users.

3.3 Rapid Application Development Model The Rapid Application Development Model (RAD) is an incremental software
development process model that emphasizes a very short development cycle. The RAD model is a high speed adaptation of the
waterfall model. The rapid development is achieved through component based construction. It results in a fully functional system
within a very short period of time if the requirements are well understood and project scope is constrained. 3.4 Component
Based Model The component based development model incorporates many of the characteristics of the spiral model. It is
evolutionary in nature [7]. It makes intensive use of existing reusable components. The focus is on integrating the components
rather than creating them from the beginning. The project cost and development cycle time can be reduced by incorporating
component reuse as part of the organizational culture. The component based model has various steps ranging from requirements
specification, component analysis, requirement modification, system design with reuse, development and integration
and system validation.

SELECTING A SOFTWARE DEVELOPMENT LIFE CYCLE

Selecting a Software Development Life Cycle (SDLC) methodology is a challenging task for many organizations. Various
software development life cycle models are suitable for specific project related conditions which include organization,
requirements stability, risks, budget, duration of project etc. One life cycle model theoretical may suite particular conditions and
at the same time other model may also looks fitting into the requirements but one should consider trade-off while deciding which
model to choose. There are various methods employed in the industry to adopt a software development model that would be
feasible to implement. Some of them maybe based on experience, expertise and even client demands. The crude numerical
approach would help us adopt a software development model based on various characteristics of the project as given in [8]
below mentioned points form the basis of adopting a software model

O ldentify the characteristics of the project

0 Score each available process model against the characteristics

0 The method with the highest score wins

Here is a suitable checklist of characteristics:
e Are the requirements well-established, orill-defined? Interface?
e Are the requirements fixed, or likely to change as the project progresses?
e Is the project small to medium-sized (up to 4 people for 2 years) orlarge?

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1463

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10

www.jetir.org (ISSN-2349-5162)

e s the application similar to projects that the developers have experience in, or is it a new area? ¢ Is the software likely to
be is it straightforward or complex (e.g. does it use new hardware)?

e Does the software have a small easy user interface or a large complex user
o Must all the functionality be delivered at once or can it be delivered as partial products?
e Isthe product safety critical or not?
o Are the developers largely inexperienced or mainly experienced?
e Does the organizational culture promote individual creativity and responsibility or does it rely on clear rules and
procedures?
Identifying characteristics of project
Project if true, score 1 if true, score 1
Characteristic
requirements well-established ill-defined
clarity
requirements fixed changeable
change
project size small to medium large to huge
application familiar new
software straightforward complex
user interface simple complex
functionality all at once partial
safety critical no yes

developer expertise

largely inexperienced

largely experienced

culture

freedom

Order

User involvement

Minimal

Extensive

Project if true, score 1 if true, score 1
Characteristic

requirements well-established ill-defined
clarity

requirements fixed changeable
change

project size small to medium large to huge
application familiar new
software straightforward complex
user interface simple complex
functionality all at once partial

safety critical no yes

developer expertise

largely inexperienced

largely experienced

culture

freedom

Order

User involvement

Minimal

Extensive

Characteristics of Iterative model

Iterative model capabilities score score
requirements 0 1
clarity

requirements 0 1
change

project size 1 0
application 0 1
software 1 0
user interface 1 0
functionality 0 1
safety critical 0 1
developer expertise 0 1
User involvement 0 1
Total Score 3 7

JETIR2010186

Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1464

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

Characteristics of waterfall model:

Waterfall model score score
capabilities

requirements 1 0
clarity

requirements 1 0
change

project size 0 1
application 0 1
software 1 0
user interface 0 1
functionality 1 0
safety critical 0 1
developer expertise 0 1
User involvement 1 0
Total Score 5 5

8. CONCLUSION

The main objective of this work is to present assessment models based on ML techniques. The performances of these models
vary, depending on the targeted quality factor. However, the first strong conclusion is that, with software projects data, black-
box supervised approaches represented by SVM, and especially, BP and RBP ANNSs, give constant and very high accuracies.
The second conclusion concerns glass-box models and their ability to capture some explicit knowledge that will guide future
software developments. The main strength of such ML models is that they are complementary. We can incorporate them in an
automated decision-making process. However, such models need to be confirmed and generalized by more experiments on
more software projects data, extracted from various and representative applications. This is the challenge to produce relevant
and reusable models.

Software quality is the degree of conformance to explicit or implicit requirements and expectations. A software metric is a
quantitative measure of a degree to which a software system or process possesses property with no defects. Hence, Software
defect prediction model helps in early detection of defects using Classification Technique. In this paper we have discussed the
various classification techniques such as Supervised, Un-supervised and Semi-supervised, which are applied on various datasets
based on existing software metrics. In future we will be comparing the results of Supervised classification techniques on
different datasets and open source projects to analyze the best classification technigque to predict the defect in order to evolve a
good software quality product.

* Quality in context of software is a common yet ambiguous term, ¢ It varies based on the perspective and also on the
environment in which a product is used and user expectations, * While software quality models and international
standards have helped us understand better the factors that may affect quality, the relationship and effect size of
individual factors/sub characteristics on overall quality is unknown, * Finding precise relationships is not only difficult

but may well be impossible given that quality depends on number of characteristics internal,
external and in use which in-turn can be affected by very large number of factors, * Large and mature software
development organizations collects and monitors software metrics widely and is a part of their day today

activities for all projects, this wealth of data can be effectively used internally to model software quality using
traditional and ML based techniques.

We proposed a framework that uses machine learning techniques in conjunction with measurement information model of
ISO/IEC 15939. « Using ML approaches means that we no need to know exact relationships between base and derived
measures and build precise analysis model of how different quality sub characteristics affect higher order quality
characteristics or overall quality. « Using the historical data, ML techniques can help assess overall quality and high order
quality characteristics models based on measurable attributes. * Another very important benefit of using ML techniques is
that they are self improving, thus as they are used in these large organizations and more data is collected over time, their
accuracy and predictive power improves making them very attractive for such analysis.

Going through SDLC, popular software development models one can get awareness about the existing scenario. Some
models based on experience, expertise and client needs vouch for their selection by developers. If one is sure of suitability
of software development model characteristics to the project requirements, then it is easier to select an SDLC. The concept
application illustrates and substantiates the validity of the chosen software development model. The questionnaire in the
tabular format facilitates an easy framework and the interpretation of scores depending on software characteristics and
project requirements enables a software developers.

REFERENCES

[1] Klopper, R., Gruner, S., & Kourie, D. (2007),0 || Assessment of a framework to compare software development

methodologies ||, Proceedings of the 2007 Annual Research Conference of the South African Institute of

Computer Scientists and Information Technologists on IT Research in Developing Countries, 56-65.
d0i:10.1145/1292491.1292498

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1465

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

[2] Software Methodologies Advantages & disadvantages of various SDLCmodels.mht

[3] Bennet, McRobb, and Farmer Object Oriented Systems Analysis and Design(Mc raw Hill 2002)p.46
[4] Bender RBT Inc., Systems Development Lifecycle: Objectives andRequirements

[5] Raymond Lewallen - CodeBetter.Com -Stuff you need to Code Better! Published08-01-2008

[6] Pressman Roger S., Software engineering pp- 33.

[7]1 Nierstraaz, O., s. Gibbs, and D. Tsichritziz, “Component - Oriented Software Development,”’pp160-
165

[8]
www.shu.ac.uk/.../project%20management%20-
%20new%20version.doc

9. Huda, Shamsul, et al. "A Framework forSoftware Defect Prediction and Metric Selection.” IEEE Access(2017).

10. Ni, Chao, et al. "A Cluster Based Feature Selection Method for Cross-Project Software Defect Prediction."”
Journal of Computer Science and Technology 32.6 (2017):10901107.

11. Zimmermann, Thomas, et al. "Cross-project defect prediction: a large scale experiment on data vs. domain vs.
process." Proceedings of the the 7th joint meeting of the European software engineering conference and the ACM
SIGSOFT symposiumon

The foundations of software engineering. ACM, 2009.

12. Laradji, Issam H., Mohammad Alshayeb, and Lahouari Ghouti. "Software defect prediction using ensemble
learning on selected features.” Information and Software Technology 58 (2015): 388-402.

13. Rajbahadur, Gopi Krishnan, et al. "The impact of using regression models to build defect classifiers." Proceedings
of the 14th International Conference on Mining Software Repositories. IEEE Press,2017.

14. Yang, Xinli, et al. "TLEL: A two-layer ensemble learning approach for just-in-time defect prediction.”
Information and Software Technology 87 (2017):206-220.

15. Turhan, Burak, et al. "On the relative value of cross-company and within-company data for defect prediction.”
Empirical Software Engineering 14.5 (2009):540-578.

[16] L. Madeyski, M.Jureczko, “Which process metrics can significantly improve defect prediction models?”, An
empiricalstudy,(2014).

[17] D.Mehta, “A Comparative study of Techniques in Data Mining”, by Manika Vermal , International Journal of
Emerging Technology and Advanced Engineering, vol. 4, no. 4,(2014).

[18] P. Reena, R. Binu, “Software Defect Prediction System —Decision Tree Algorithm With Two Level Data Pre-
processing”, International Journal of Engineering Research & Technology (IJERT), vol. 3, no. 3,(2014).

[19] G.Abaei, A.Selamat, “A survey on software fault detection based on different prediction approaches”, Vietnam
Journal of Computer Science, (2014), vol. 1, no. 2, pp.79-95.

[20] A.Okutan, O. T.Yildiz, “Software defect prediction using Bayesian networks”, Empirical Software Engineering,
(2014), vol. 19, no. 1, pp. 154-181. International Journal of Database Theory and Application Vol.8, No.3 (2015)
188Copyright

(© 2015 SERSC [21] A.TosunMisirli, A. seBa,

S.Bener,“A Mapping Study on Bayesian Networks for Software Quality Prediction”, Proceedings of the 3rd
International Workshop on Realizing Artificial Intelligence Synergies in Software Engineering, (2014).

[22] R.Kalsoom, M. Qureshi, “Application andVerification of Algorithm Learning Based Neural Network”,arXiv
preprint arXiv:1406.2614, (2014), arxiv.org. [23] C. Catal, “A Comparison of Semi- Supervised Classification Approaches
for Software Defect Prediction”, Journal of Intelligent Systems, vol. 23, no. 1, pp. 75-82,(2013).

[24] R.Goyala, P.Chandraa, Y. Singha, “Suitability of KNN Regression in the Development of Interaction Based
Software Fault Prediction Models”, IERI Procedia, International Conference on Future Software Engineering and
Multimedia Engineering, Elsiever, vol 6, pp. 15- 21,(2013),.

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1466

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

[25] G.Scanniello, C.Gravino, A.Marcus,T.Menzies,“Class level fault prediction using software clustering,
Automated Software Engineering (ASE)”, 2013 IEEE/ACM 28th International Conference,(2013).

[26] B. V. Balajil, V.Venkateswara Rao2, “Improved Classification Based Association Rule Mining”, International
Journal of Advanced Research in Computer and communication Engineering, vol. 2, no. 5,(2013).

[27] R. M. Rahman, F. Afroz,“Comparison of Various Classification Techniques Using Different Data Mining Tools
for Diabetes Diagnosis”,Journal of Software Engineering and Applications, (2013), vol.6,pp.85-97

[28] T. Angel Thankachanl , K. Raimond2 , “A Survey on Classification and Rule Extraction Techniques for Data
mining”,IOSR Journal of Computer Engineering ,vol. 8, no. 5,(2013), pp. 75-78.

[29] A. Chugl and S. Dhalll , “Software Defect Prediction Using Supervised Learning Algorithm and Unsupervised
Learning Algorithm”, The Next Generation Information Technology Summit (4th InternationalConference),(2013),pp.1-6.

[30] “Software defect prediction using supervised learning algorithm and unsupervised learning algorithm”,
Confluence 2013: The Next Generation Information Technology Summit (4th International Conference),(2013).

[31] M. Surendra Naidu, “Classification of Defects in Software Using Decision Tree Algorithm”, International Journal
of Engineering Science and Technology (1JEST),(2013).

[32] M. L., H. Zhang, R. Wu, Z.-H. Zhou, “Sample-based software defect prediction with active and semisupervised
learning”, Automated Software Engineering , (2012), vol. 19, no. 2, pp. 201-230

[33] H.Najadat and I.Alsmadi, “Enhance Rule Based Detection for Software Fault Prone Modules”, International
Journal of Software Engineering and Its Applications, vol. 6, no. 1, (2012).

[34] S. Kaur, and D. Kumar, “Software Fault Prediction in Object Oriented Software Systems Using Density Based
Clustering Approach”, International Journal of Research in Engineering and Technology (IJRET) vol. 1, no.2,(2012).

[35] K. Gao, T..M.Khoshgoftarr, “Software Defect Prediction for high- dimensional and class- imbalanced data”, 23rd
International Conference on Software Engineering & Knowledge Engineering (SEKE'2011), Eden Roc Renaissance,
(2011)Miami Beach, USA.

[36] B. Ma, D. Karel, V. Jan, B. Bart, “Software defect prediction based on association rule classification”, Research
Center for Management Informatics (LIRIS), Leuven,(2011).

[37] C. Catal, U.Sevim, B. Diri,“Practical development of an Eclipse-based software fault prediction tool using Naive
Bayes algorithm”, Elsevier,(2011).

[38] Y. Chen, P. Du,Xi, X.-H. Shen, “Research on Software Defect Prediction Based on Data Mining”, Computer and
Automation Engineering(ICCAE), 2nd International Conference,(2010),vol.1,pp.563-567.[39]T. [38] Y. Chen, P.
Du,Xi , X.-H. Shen, “Research on Software Defect Prediction Based on Data Mining”, Computer and Automation
Engineering(ICCAE), 2nd International Conference,(2010),vol.1,pp.563-567.

[39]T.Nu Phyu, “Survey of Classification Techniques in DataMining”, International MultiConference of Engineers and
Computer Scientists, (2009); Hong Kong.

[40] C.-P.Chang a,*, C.-P.Chu a , Y.-F.Yehb , “Integrating in-process software defect prediction with association
mining to discover defectpattern”, Information and Software Technology ,vol. 51, no. 2, (2009), pp.375-384.

[41] D.Gray,D. Bowes, N. Davey, Y. Sun, “Bruce Christianson, Using the Support Vector Machineas a Classification
Method for Software Defect Prediction with Static Code Metrics”,11th International Conference, EANN 2009, (2009);
London,UK.

[42] M. Jureczko, “Significance of Different Software Metrics in Defect Prediction”, Institute of Computer
Engineering, Control and Robotics, Wroctaw University of Technology, WybrzezeWyspianskiego vol. 27, pp.50-
370.

[43] S. Lessmann,B.Baesens, C.Mues, and S. Pietsch,“Benchmarking Classification Models for Software Defect
Prediction: A Proposed Framework and Novel Findings”, IEEE Transactions on Software Engineering,(2008).

[44] S. Bibi, , G. Tsoumakas, I. Stamelos, 1. Vlahavas, “Regression via Classification applied on software defect
estimation”,Elsiever,vol. 34, no. 3,(2008), pp. 2091-2101. [45] K. O. Elish, M. O. Elish, “Predicting defect-prone software
modules using support vector machines” ,Elsevier, vol. 81,no. 5,(2008).

JETIR2010186] Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org \ 1467

http://www.jetir.org/

